Shape optimization in nonlinear elasticity by the level method

François Jouve University Paris Diderot (Paris 7) & Laboratoire J.L.Lions

Grégoire Allaire, CMAP, Ecole Polytechnique (Palaiseau) Anca-Maria Toader, Lisbon University

www.cmap.polytechnique.fr/~optopo

jouve@math.jussieu.fr

Level set method

• Combine some advantages of the shape sensitivity method and the topological method (homogenization, topological gradient, SIMP)

• Based on the shape derivative (Hadamard, Murat-Simon).

- * Easy handling of various objective functions
- * Can be adapted to any direct problem (e.g. nonlinear)

• Shape representation by the 0 level set of a scalar field on a fixed mesh (Osher-Sethian).

* Moderate cost

- * No numerical instabilities due to remeshing
- * Easy topology changes
 - Remaining drawbacks:
- 1. reduction of topology (rather than variation) in 2d,
- 2. local minima.

Hint: coupling with the topological gradient

Setting of the problem

Linearly elastic material. Isotropic Hooke's law A. u displacement field, $e(u) = \frac{1}{2} (\nabla u + \nabla u^T)$ deformation tensor.

Linearized elasticity system posed on $\omega \subset \Omega$ (a given open bounded domain):

$$\begin{cases} -\operatorname{div}(Ae(u)) &= 0 \quad \text{in } \omega \\ u &= 0 \quad \text{on } \partial \omega \cap \Gamma_D \\ (Ae(u)) \cdot n &= g \quad \text{on } \partial \omega \cup \Gamma_N \end{cases}$$

It admits a unique solution.

Objective functions

Most widely used in structural topology optimization : compliance

$$J(\omega) = \int_{\omega} Ae(u) : e(u)dx = \int_{\omega} A^{-1}\sigma : \sigma dx = \int_{\partial \omega} g \cdot u \, ds = c(\omega)$$

Global measurement of rigidity.

Many other objective functions are possible and useful (depending on the stress tensor, the displacement field, the eigenvalues etc...)

Shape derivative (Murat-Simon, Céa)

 ω_0 reference domain. We are interested in variations of the form

$$\omega = \{x + \theta(x) \mid x \in \omega_0\} = (\mathrm{Id} + \theta)\omega_0$$

with $\theta \in W^{1,\infty}(\mathbb{R}^d; \mathbb{R}^d).$

 $\theta(x)$ is a vector field that *deforms* the reference domain ω_0 .

Lemma: For any $\theta \in W^{1,\infty}(\mathbb{R}^d; \mathbb{R}^d)$ such that $\|\theta\|_{W^{1,\infty}(\mathbb{R}^d; \mathbb{R}^d)} < 1$, $(\operatorname{Id} + \theta)$ is a diffeomorphism in \mathbb{R}^d .

Definition:

The shape derivative of $\omega \mapsto J(\omega)$ at ω_0 is the Fréchet derivative of $\theta \mapsto J((\operatorname{Id} + \theta)\omega_0)$ at 0.

Shape derivative (Murat-Simon)

Lemma: Let ω_0 be a smooth bounded open set and $J(\omega)$ at differentiable function at ω_0 . Its derivative satisfies

$$J'(\omega_0)(\theta_1) = J'(\omega_0)(\theta_2)$$

if $\theta_1, \theta_2 \in W^{1,\infty}({\rm I\!R}^N; {\rm I\!R}^N)$ are such that

$$\left\{ \begin{array}{l} \theta_2 - \theta_1 \in \mathcal{C}^1(\mathbb{R}^N; \mathbb{R}^N) \\ \theta_1 \cdot n = \theta_2 \cdot n \quad \text{on } \partial \omega_0. \end{array} \right.$$

Examples of shape derivatives (I)

Objective-function defined in the domain: Let ω_0 be a smooth bounded open set of class \mathcal{C}^1 of \mathbb{R}^N . Let $f(x) \in W^{1,1}(\mathbb{R}^N)$ and J defined by

$$J(\omega) = \int_{\omega} f(x) \, dx$$

Then J is differentiable at ω_0 and

$$J'(\omega_0)(\theta) = \int_{\omega_0} \operatorname{div} \left(\theta(x) f(x)\right) dx = \int_{\partial \omega_0} \theta(x) \cdot n(x) f(x) ds$$

for all $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$.

Examples of shape derivatives (II)

Objective-function defined on the boundary: Let ω_0 be a smooth bounded open set of class \mathcal{C}^1 of \mathbb{R}^N . Let $f(x) \in W^{2,1}(\mathbb{R}^N)$ and J defined by

$$J(\omega) = \int_{\partial \omega} f(x) \, ds.$$

Then J is differentiable at ω_0 and

$$J'(\omega_0)(\theta) = \int_{\partial \omega_0} \left(\nabla f \cdot \theta + f \left(\operatorname{div} \theta - \nabla \theta n \cdot n \right) \right) ds$$

for all $\theta \in W^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N)$. Moreover if ω_0 is smooth of class \mathcal{C}^2 , then

$$J'(\omega_0)(\theta) = \int_{\partial \omega_0} \theta \cdot n\left(\frac{\partial f}{\partial n} + Hf\right) ds,$$

where H is the mean curvature of $\partial \omega_0$ defined by $H = \operatorname{div} n$.

Shape derivative of the compliance

$$J(\omega) = \int_{\partial \omega \cup \Gamma_N} g \cdot u \, ds = \int_{\omega} A \, e(u) : e(u) \, dx,$$

$$J'(\omega_0)(\theta) = \int_{\Gamma_0} \left(\left[\frac{\partial (f \cdot u)}{\partial n} + Hf \cdot u \right] - Ae(u) : e(u) \right) \theta \cdot n \, ds,$$

where u is the state (displacement field) in ω_0 , and H the mean curvature of $\partial \omega_0$.

No adjoint state involved. The compliance problem is self-adjoint.

Front propagation by level set

Shapes are not meshed, but captured on a fixed mesh of a large box Ω .

Parameterization of the shape ω by a level set function:

$$\begin{cases} \psi(x) = 0 & \Leftrightarrow x \in \partial \omega \cap \Omega \\ \psi(x) < 0 & \Leftrightarrow x \in \omega \\ \psi(x) > 0 & \Leftrightarrow x \in (\Omega \setminus \omega) \end{cases}$$

- Exterior normal to ω : $n = \nabla \psi / |\nabla \psi|$.
- Mean curvature: $H = \operatorname{div} n$.
- These formula make sense everywhere in Ω , not only on the boundary $\partial \omega$.
- \longrightarrow natural extension

Level set

Hamilton-Jacobi equation

If the shape $\omega(t)$ evolves in pseudo-time t with a normal speed V(t, x), then ψ satisfies a Hamilton-Jacobi equation:

$$\psi(t, x(t)) = 0$$
 for all $x(t) \in \partial \omega(t)$.

deriving in t yields

$$\frac{\partial \psi}{\partial t} + \dot{x}(t) \cdot \nabla \psi = \frac{\partial \psi}{\partial t} + Vn \cdot \nabla \psi = 0.$$

As $n=\nabla\psi/|\nabla\psi|$ we obtain

$$\frac{\partial \psi}{\partial t} + V |\nabla \psi| = 0.$$

This equation is valid on the whole domain Ω , not only on the boundary $\partial \omega$, assuming that the velocity is known everywhere.

 \rightarrow the description of the boundary of ω can remain implicit during the algorithm.

Application to shape optimization

If the shape derivative can be expressed as an integral of the form:

$$J'(\omega_0)(\theta) = \int_{\partial \omega_0} v \,\theta \cdot n \, ds,$$

then a valid descent direction, allowing J to decrease at the first order, is

$$\theta = -v \, n$$

Thus, solving

$$\frac{\partial \psi}{\partial t} - v |\nabla \psi| = 0 \quad \text{ in } \Omega$$

is equivalent to perform a descent algorithm where t is a descent parameter

Numerical algorithm

- 1. Initialization of the level set function ψ_0 (e.g. a product of sinus).
- 2. Iterations until convergence for $k \ge 1$:
 - (a) Computation of u_k and eventually p_k by solving a linearized elasticity problem on the shape ψ_k . Computation of the shape gradient \rightarrow normal velocity V_k
 - (b) Transport of the shape by the speed V_k (Hamilton-Jacobi equation) to obtain a new shape ψ_{k+1} . (Several successive time steps can be applied for a same velocity field). The descent step is controlled by the CFL condition on the transport equation and by the decreasing of the objective function.
 - (c) Possible reinitialization of the level set function such that ψ_{k+1} is the signed distance to the interface.

Why nonlinear elasticity ?

Why nonlinear elasticity ?

Hyperelasticity

$$\begin{cases} -\operatorname{div} (T(F)) &= f & \operatorname{in} \Omega \\ u &= 0 & \operatorname{on} \Gamma_D \\ T(F)n &= g & \operatorname{on} \Gamma_N. \end{cases}$$

where $F = (I + \nabla u)$ and the first Piola-Kirchhoff stress tensor T derives from a potential W(F) (stored energy function)

$$T_{ij} = \frac{\partial W(F)}{\partial F_{ij}}, \quad i, j \in \{1, \dots, d\},$$

elasticity tensor:

$$\mathcal{A}_{ijkl}(u) = \frac{\partial T_{ij}(F)}{\partial F_{kl}} = \frac{\partial^2 W(F)}{\partial F_{ij} \partial F_{kl}}.$$

Shape derivative

If
$$J(\Omega) = \int_{\Omega} j(x, u(x)) dx + \int_{\partial \Omega} l(x, u(x)) ds$$
,

then

$$J'(\omega_0)(\theta) = \int_{\partial \omega_0} \theta \cdot n \left(j(u) + T(I + \nabla u) : \nabla p - p \cdot f \right) ds + \int_{\partial \omega_0} \theta \cdot n \left(\frac{\partial l(u)}{\partial n} + H l(u) \right) ds - \int_{\Gamma_N} \theta \cdot n \left(\frac{\partial (g \cdot p)}{\partial n} + H g \cdot p \right) ds - \int_{\Gamma_D} \theta \cdot n \left(\frac{\partial h}{\partial n} \right) ds,$$

where $h = u \cdot T(I + \nabla p)n + p \cdot T(I + \nabla u)n$ and p is the adjoint state solution of

$$\begin{cases} -\operatorname{div} (\mathcal{A}(u) \nabla p) &= -j'(u) & \text{in } \omega_0 \\ p &= 0 & \text{on } \Gamma_D \\ (\mathcal{A}(u) \nabla p)n &= -l'(u) & \text{on } \Gamma_N. \end{cases}$$

Compliance case

$$J(\omega) = \int_{\partial \omega} g \cdot u \, ds \quad \Rightarrow \quad j(u) = 0 \quad \text{and} \quad l(u) = g \cdot u$$

If the load g is constant and applied on a fixed (non optimizable) part of the boundary the shape derivative is

$$J'(\omega_0)(\theta) = \int_{\partial \omega_0} \theta \cdot n \Big(T(I + \nabla u) : \nabla p \Big) \, ds$$

and the adjoint p is solution of

$$\begin{cases} -\operatorname{div} (\mathcal{A}(u) \nabla p) &= 0 & \text{ in } \omega_0 \\ p &= 0 & \text{ on } \Gamma_D \\ (\mathcal{A}(u) \nabla p)n &= -g & \text{ on } \Gamma_N. \end{cases}$$

Remarks

• The problem is not self adjoint (p = -u) as in the linear case.

• The adjoint problem is linear. It admits a unique solution as soon as $\mathcal{A}(u)$, the linearized operator around the solution u, is coercive.

• The direct problem does not always admits a unique solution...

 \bullet ... and when a solution exists, it is not always easy to compute it numerically \rightarrow additional restart points in the algorithm.

• Other expressions for the compliance are not equivalent:

$$\frac{1}{2}\int_{\omega}T(F):(FF^{T}-I)\,dx = \int_{\omega}W(F)\,dx \neq \int_{\partial\omega}g\cdot u\,ds,\qquad (F=I+\nabla u)$$

and may lead to very different optimal solutions.

Linear

f = 1

• The level set function is periodically reinitialized to avoid it to be *too flat* (\rightarrow poor precision on ψ) or *too steep* (\rightarrow poor precision on $\nabla \psi$ i.e. the normal) after some transport steps. It is done by solving

$$\frac{\partial \psi}{\partial t} + \operatorname{sign}(\psi) \Big(|\nabla \psi| - 1 \Big) = 0 \quad \text{ in } \Omega,$$

whose stationary solution is the signed distance to the interface $\{\psi(t=0,x)=0\}$.

Well well well... That's what you read in all the papers dealing with level sets That is certainly true at the continuous level *Let's see what happens for the discrete problem*

Example of function ψ on a rough mesh

Manual and exact computation of the signed distance and plot of the new level sets !

Level set after 100 iterations of exact computation of the signed distance !!

No reinitialization !

